Ancestry-Specific Prevalence of Pathogenic Variants Among Patients with Breast Cancer Who Do Not Meet Guidelines for Genetic Testing

Ryan Bernhisel, MStat¹; Matthew Kucera, MSc¹; Shelly Cummings, MS¹; Edith Smith, DNP¹; Timothy Simmons, MStat¹; Elisha Hughes, PhD¹ 1 Myriad Genetics, Salt Lake City, Utah

This presentation is the intellectual property of the author/presenter. Contact them for permission to reprint and/or distribute:

rbernhis@myriad.com

Background

- Patients with breast cancer (BC) who harbor germline pathogenic variants (PVs) in hereditary cancer-associated genes have improved survival when their surgical and other treatment decisions are tailored to their specific genetic alterations.
- Additionally, the identification of germline PVs is crucial for family members, as it allows for interventions that can decrease cancer-related morbidity and mortality.
- Commonly utilized guidelines recommend genetic testing only under specific conditions:
- if cancer is diagnosed at a young age, typically ≤ 50 yrs
- if there is a strong family history (FH) of cancer
- or if there are specific tumor characteristics.
- Several studies have demonstrated that many patients who do not meet these criteria unknowingly carry PVs and may, therefore, be receiving suboptimal care.
- In the United States, Black and Hispanic women face disproportionately high rates of BC mortality, highlighting the importance of genetic testing in these populations.
- It is unclear whether guideline-based restrictions differentially impact women of certain ancestral backgrounds.
- We explored this question by estimating PV prevalence among BC patients of Asian, Black/ African, Hispanic, Multiple, and White/non-Hispanic ancestries who do not meet guidelines for genetic testing.

Methods

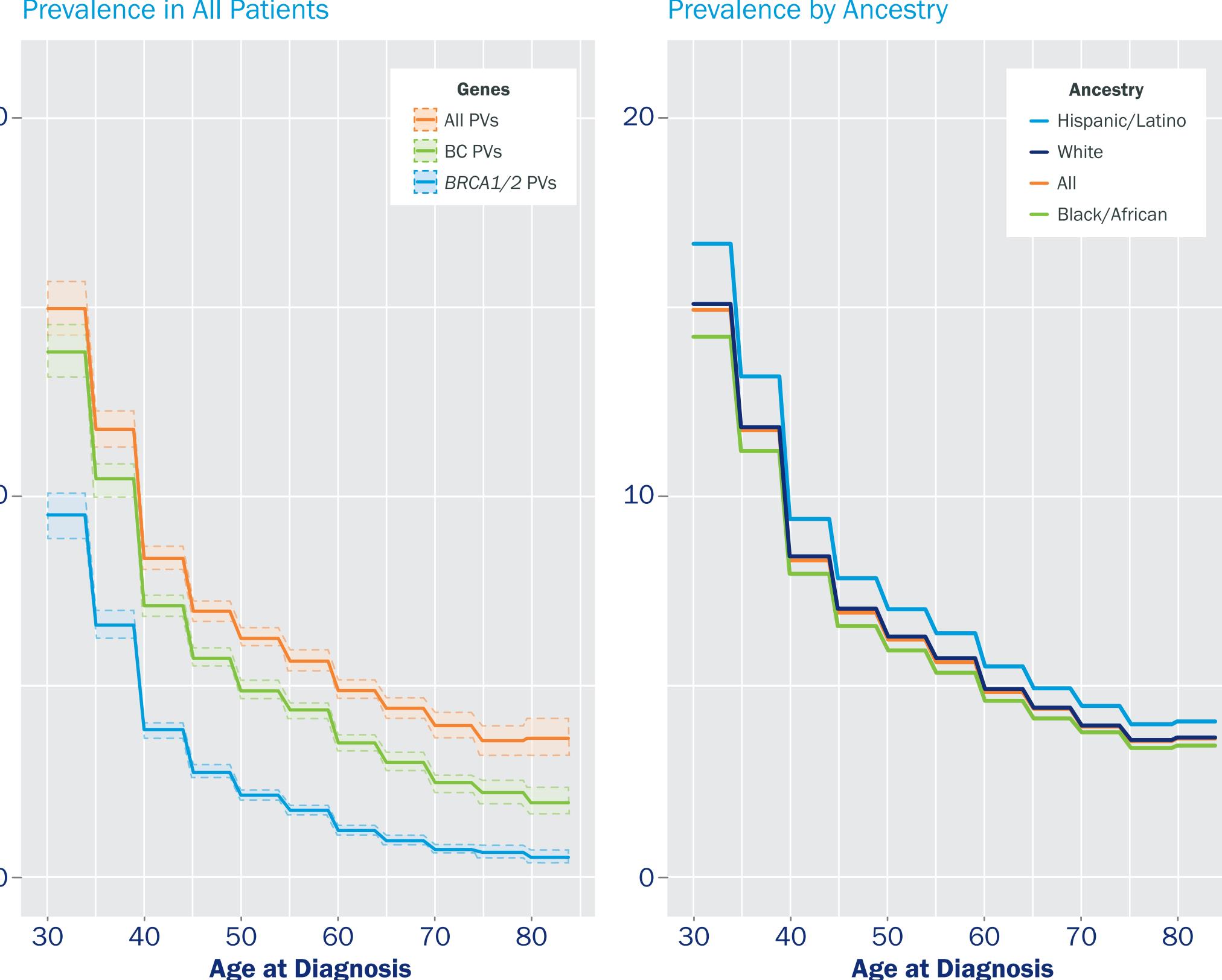
- Multivariable logistic regression models were constructed to analyze trends in the prevalence of PVs based on age, personal/family history, and ancestry in a consecutive cohort of patients referred for hereditary cancer testing with a multigene panel.
- We report age- and ancestry-specific model-based estimates of prevalence for patients diagnosed with BC with no FH and no prior personal history of cancer of any type.
- Prevalence is summarized overall for 25-48 hereditary cancer genes with guidelinebased medical management recommendations, as well as for the genes most frequently implicated in BC.

Among 245,669 female patients with BC, 8,025 (3.3%) were Asian, 25,900 (10.5%) were Black/African, 20,022 (8.1%) were Hispanic, 141,279 (57.5%) were White/non-Hispanic, and 16,689 (6.8%) were patients with multiple self-reported ancestries (Table 1).

- Overall prevalence estimates of any PV were 6.3% for those diagnosed at age 50 and 3.6% among those diagnosed at age 80 (Figure 1 and Supplementary Table 1).
- Estimates of PV prevalence for a patient with BC with no FH and no prior personal history of cancer of any type were similar across ancestries, with the highest prevalence among Hispanic women (Figures 1 and 2, Supplementary Table 1).

Table 1. Age of breast cancer diagnosis and PV status by ancestry

Ancestry	N (%)	Age BC Diagnosis Mean (SD)	Any PV (%)	BC Gene PV* (%)	BRCA1/2 PV (%)
All Patients	245,669	52 (11.9)	23,771 (9.7 %)	18,423 (7.5 %)	10,345 (4.2 %)
Asian	8,025 (3.3 %)	48.6 (10.5)	704 (8.8%)	549 (6.8 %)	413 (5.1 %)
Black/African	25,900 (10.5 %)	50.8 (11.9)	2,458 (9.5 %)	1,903 (7.3 %)	1,347 (5.2 %)
Hispanic	20,022 (8.1 %)	48.6 (11.1)	2,217 (11.1 %)	1,907 (9.5 %)	1,230 (6.1 %)
Multiple	16,689 (6.8 %)	49.7 (11.4)	1,646 (9.9 %)	1,327 (8.0 %)	809 (4.8 %)
White/Non-Hispanic	141,279 (57.5 %)	53.2 (11.9)	13,487 (9.5 %)	10,158 (7.2%)	5,089 (3.6 %)


^{*}BC Gene PV refers to BRCA1, BRCA2, CHEK2, ATM, and PALB2.

Please see **Supplementary Table 1** for full prevalence estimate data:

Conclusions

- Among patients with BC from diverse ancestries, a substantial fraction of patients who do not meet guidelines for genetic testing may unknowingly carry PVs.
- Removing age-based restrictions on genetic testing could improve the survival of patients with BC and identify family members appropriate for genetic testing.

Disclosures: All authors were employees of Myriad Genetics, Inc. at the time of this study and received salaries and stock as compensation.