A noninvasive prenatal screen with >4% fetal fraction in all samples: Clinical laboratory experience

Rotem Ben-Shachar, PhD; Susan Hancock, MS, CGC; Jim Goldberg, MD; Dale Muzzey, PhD

All authors were employed by Myriad Genetics, Inc. at the time of this study

INTRODUCTION

- For millions of pregnant patients, noninvasive prenatal screening (NIPS) based on cell-free DNA (cfDNA) detects whether their pregnancies are at elevated risk for fetal chromosomal abnormalities.
- Fetal fraction (FF), the proportion of cfDNA originating from the placenta, can impact the accuracy of NIPS, and many laboratories fail samples with low FF, commonly defined as FF <4%.
- FF has been shown to negatively correlate with body mass index (BMI), pregnancies with trisomy 18 or 13, and early gestational age, resulting in higher test failure rates in these populations.
- A whole-genome sequencing (WGS)-based NIPS that employs FF amplification (FFA) technology for all samples has been shown to increase FF by 3.9-fold for samples with low FF.¹

METHODS

- We retrospectively analyzed results from patients who underwent NIPS with FFA during a twomonth period.
- The FFA technology increased FF by preferentially sequencing short cfDNA fragments, known to be enriched for fetal-derived cfDNA. FF was assessed for patients who received a screening result (N= 19,433).
- BMI data were available for 12,579 patients.

RESULTS

Table 1. Actual patient cases.

Patient	Gestational Age	BMI	Other Lab Result (FF)	Prequel with AMPLIFY Result (FF)
A	13 weeks	25	Failed due to "Low FF"	Positive T21 (6%) & later confirmed with amnio
В	10 weeks	25	Failed (2%)	Negative (20%)
C	10 weeks	39	Failed (3%)	Negative (9%)
D	11 weeks	>40	Failed (3%)	Negative (12%)
E	12 weeks	45	Failed (2%)	Negative (9%)

- Median maternal age was 31 years and median gestational age was 12 weeks.
- Fetal fraction increased overall by >2-fold with FFA as compared to standard NIPS without FFA (Fig 1).
- No patients had FF results <4%. Ninety-nine percent of patients had FF >8.1% (Fig 2A).
- In patients with multiple risk factors for low FF, both high BMI and early gestational age draw, FF remained abundant. For example, the average FF was 13.1% among patients with BMI ≥40 with samples drawn at 10 weeks gestation (Fig 2).
- Five samples were identified as having had a previous test failure due to low FF in outside laboratories, including one that had failed to identify Down syndrome (Table 1).

(A) Fetal fraction distribution across >19,000 clinical samples. (B) FF was assessed looking at the 1st percentile FF for a variety of combinations of BMI and gestational age. The dot size corresponds to the number of women with the indicated BMI and gestational age.

CONCLUSION

- A commercial NIPS using FFA for all samples provides confident results regardless of a patient's risk factors for low FF. FFA provides ample FF, preventing unnecessary test failures in NIPS.
- This innovative technology identifies pregnancies at risk for chromosome abnormalities regardless of patient BMI.

REFERENCES: 1. Welker, N. C. et al. High-throughput fetal fraction amplification increases analytical performance of noninvasive prenatal screening. Genet. Med. (2020) doi:10.1038/s41436-020-01009-5

Presented at ISPD on June 6-8, 2021.