Contribution of Large Genomic Deletions to Recessive Mendelian Disease Carrier Burden within a Healthy Population

Sam Cox
Senior Clinical Genomics Scientist | Myriad Women's Health
John Castiblanco, Raul Torres, Erik Zmuda

Presented at ACMG on April 16, 2021.
Financial Disclosure

Author is employed by Myriad Women’s Health and receives salary and stock.
Introduction: Intragenic deletions

- Copy number variants (CNVs) have been overlooked in published case studies, diagnostic testing, & carrier screening for multiple hereditary disorders:
 - Require specialized protocols to detect with high accuracy
 - Contribution may be considered negligible
- Full contribution to carrier rates remains to be determined for some genetic diseases and ethnic populations
 - Available literature: average 3.6%, median 0%, across 169 recessive Mendelian diseases examined
- **Goal:** Examine population CNV carrier rates among an ethnically diverse cohort of individuals across a range of serious and clinically actionable Mendelian diseases
Methods

346,182 patients: routine Expanded Carrier Screening

NGS: 176 Mendelian recessive disorders

Variant calling: incl. CNVs (leveraging NGS read-depth values)

ACMG-based classification

Contribution of CNV dels & dup‡

Results from 169* genes were interrogated

* 7 genes excluded due to specialized assay design or because loss-of-function was not a disease mechanism
‡ CNV duplications for CFTR & DMD
Results: Self-reported ethnicity among 346,182 patients
Widespread contribution of CNVs to population carrier burden

Pathogenic CNVs detected in 91% of genes (153/169)

CNV contribution to carrier rate

- Estimate (literature)
- ECS cohort
CNV contribution exceeded 5% for 37 genes

% Contribution of CNVs to Carriers by Gene/Disease

% Carriers of CNVs
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Overall no. of disease carriers
0 500 1000 1500 2000 2500

Contiguous gene deletion
17% of pathogenic CNVs are completely novel

<table>
<thead>
<tr>
<th>CNV Classification</th>
<th>Published Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely Pathogenic without case support</td>
<td>-</td>
</tr>
<tr>
<td>Likely Pathogenic with case support</td>
<td>![Icon]</td>
</tr>
<tr>
<td>Known Pathogenic</td>
<td>![Icon]</td>
</tr>
</tbody>
</table>

- Finnish
- Native American
- Ashkenazi
- Jewish
- Hispanic
- Colombian
- Native American
- Southern Indigenous
- Middle Eastern
- Southeast Asian
- South Asian
- East Asian

75.2% of cases are known pathogenic, 17.0% are likely pathogenic **without** case support, and 7.7% are likely pathogenic **with** case support.
Landscape of CNV contribution: 169 diseases
Recurrent CNVs: Multiethnic

Example: **GALC 30 kb del**
- Krabbe disease
- frame N/A (involves last coding exon)
- **31%** disease alleles for total cohort
- seen in **89%** of ethnicities
- Luzi *et al.* 1995, Tappino *et al.* 2010:
 - reported as frequent in Caucasians
Recurrent CNVs: Multiethnic

<table>
<thead>
<tr>
<th>CNV</th>
<th>Pop freq</th>
<th>% ethnicities</th>
<th>% all carriers</th>
<th>Frame</th>
<th>Published evidence (PMIDs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALC Exon 11-17 del</td>
<td>0.14%</td>
<td>86%</td>
<td>31%</td>
<td>N/A (last coding exon)</td>
<td>‘30kb deletion’ reported as frequent in Caucasians. Nonrecurrent appearance (8634707, 20886637)</td>
</tr>
<tr>
<td>CLN3 Exon 8-9 del</td>
<td>0.19%</td>
<td>71%</td>
<td>82%</td>
<td>OUT-OF-FRAME</td>
<td>‘1 kb deletion’ reported as a founder mutation in a common European ancestor (22545070)</td>
</tr>
<tr>
<td>CTNS 57 kb deletion</td>
<td>0.16%</td>
<td>71%</td>
<td>58%</td>
<td>N/A (1st coding exon)</td>
<td>57 kb deletion reported as a Caucasian founder mutation, but reported in some non-European populations (10417278, 30949462)</td>
</tr>
<tr>
<td>HEXB Exon 1-5 del</td>
<td>0.04%</td>
<td>71%</td>
<td>16%</td>
<td>N/A (1st coding exon)</td>
<td>Recombination between two Alu sequences. Suggested French or French-Canadian founder origin (2147027)</td>
</tr>
<tr>
<td>HBB Exon 1-3 del</td>
<td>0.05%</td>
<td>71%</td>
<td>2%</td>
<td>WHOLE GENE</td>
<td>Deletions of varying size have been reported in a large number of ethnicities (23637309)</td>
</tr>
<tr>
<td>GJB2-D13S1830 del</td>
<td>0.04%</td>
<td>71%</td>
<td>2%</td>
<td>PROMOTER</td>
<td>Founder effect in Ashkenazi Jews and a suggested common founder for countries in Western Europe (14571368)</td>
</tr>
</tbody>
</table>
Recurrent CNVs: Known ethnicity-specific

<table>
<thead>
<tr>
<th>CNV</th>
<th>Ethnicity-specific</th>
<th>Sub-pop freq</th>
<th>% all carriers</th>
<th>Frame</th>
<th>Significance (p-value)</th>
<th>Published evidence (PMIDs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB Exon 55 del</td>
<td>Ashkenazi Jewish</td>
<td>7.4E-03</td>
<td>75%</td>
<td>IN-FRAME</td>
<td>2.56E-65</td>
<td>Ashkenazi Jewish founder (15221447, 19232495)</td>
</tr>
<tr>
<td>GALT Exon 1-11 del</td>
<td>Ashkenazi Jewish</td>
<td>5.6E-03</td>
<td>76%</td>
<td>WHOLE GENE (bipartite structure)</td>
<td>1.91E-57</td>
<td>Ashkenazi Jewish founder (11286505, 17079880)</td>
</tr>
<tr>
<td>MCOLN1 Exon 1-7 del</td>
<td>Ashkenazi Jewish</td>
<td>2.3E-03</td>
<td>26%</td>
<td>N/A (1st coding exon)</td>
<td>4.01E-21</td>
<td>Ashkenazi Jewish founder (10973263, 11551108)</td>
</tr>
<tr>
<td>ERCC8 Exon 4 del</td>
<td>East Asian</td>
<td>4.7E-04</td>
<td>30%</td>
<td>OUT-OF-FRAME</td>
<td>2.53E-04</td>
<td>East Asian founder rearrangement involving IVS4 (28333167, 29057985)</td>
</tr>
</tbody>
</table>
Recurrent CNVs: Novel ethnicity-specific

CAPN3 Exon 1-24 del
- Calpainopathy
- whole gene del
- observed 22 times in *Hispanic* patients
- 15% disease alleles for this ethnicity
- **Reported in different ethnicity:**
 - Jaka *et al.* 2014: 2 Spanish families - authors suggest as possible founder in south of Spain
Recurrent CNVs: Novel ethnicity-specific

\textit{ATP7B} Exon 2 del

- Wilson disease
- out-of-frame
- observed 16 times in \textbf{African or African-American} patients
- 11\% disease alleles for this ethnicity
- \textbf{Reported in different ethnicity:}
 - Hua \textit{et al.} 2016, Chen \textit{et al.} 2019: 4 Chinese cases
Recurrent CNVs: Novel ethnicity-specific

MAN2B1 Exon 7-16 del
- Alpha-mannosidosis
- In-frame (37% protein)
- Observed 9 times in **African or African-American** patients
- 16% disease alleles for this ethnicity
- Not found in the literature:
 - Cases with encompassed deletions only
Recurrent CNVs: Novel ethnicity-specific

BCKDHB Exon 4-6 del
- Maple syrup urine disease type Ib
- in-frame (34% protein)
- observed 6 times in East Asian patients
- 33% disease alleles for this ethnicity
- **Reported in different ethnicity:**
 - Abiri *et al.* 2019: 1 Iranian case
Conclusions

• Contribution of CNVs to population carrier burden is widespread for serious and clinically actionable Mendelian diseases.

• Recurrent CNVs make a previously unappreciated and clinically relevant contribution to ethnicity-specific disease allele frequency.

• Highlights the need to incorporate CNV calling in testing paradigms to maximize detection rates across the broad spectrum of patients and healthy adult individuals.
Acknowledgements

Erik Zmuda, PhD
Raul Torres, PhD
Christoph Klein, PhD
John Castiblanco, PhD
Clinical Genomics Team