The Clinical Utility of Combinatorial Pharmacogenomic Testing for Patients with Depression: A Meta-Analysis

Lisa Brown, PhD; Oliver Vanrijikovic, PhD; James Li, MS; Ken Yu, MS; Talal Al Habab, PharmD; Molly O’Hare, MS; Krystal Brown, PhD; Michael R. Jablonski, PhD; Bryan Dechairo, PhD

1. Myriad Neuroscience, Mason, OH; 2. Myriad Genetics, Salt Lake City, UT

BACKGROUND

Pharmacogenomic testing has emerged as a possible approach to make data-driven treatment decisions for patients with Major Depressive Disorder (MDD). However, there is mixed evidence for the utility of pharmacogenomic testing due to differences in tests used, populations studied, and outcomes evaluated.

Meta-analyses provide a high level of evidence and can be useful in evaluating the overall utility of a testing approach for clinical use.

Given the meaningful differences between tests, all tests need to be evaluated separately and meta-analyses should be performed for each individual pharmacogenomic test.

OBJECTIVE

We present the results of a meta-analysis of prospective, two-arm studies examining the clinical utility of using a combinatorial pharmacogenomic test to inform treatment decisions for patients with MDD who had at least one prior medication failure.

METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines were utilized for this meta-analysis.

A systematic search was performed, and all identified reports were screened to identify two-arm, prospective studies evaluating the clinical utility of this specific test that included patients ≥18 years of age diagnosed with MDD who had at least 1 prior medication failure.

Overall, 1,556 patients were included from 4 studies [2 open-label studies and 2 randomized controlled trials (RCTs)].

All included studies assessed symptom improvement, response, and remission using the 17-item Hamilton Depression Rating Scale (HAMD-17).

The pooled mean effect of symptom improvement and pooled relative risk ratio of response and remission were calculated using a random effects model.

Sub-analyses were performed according to study type.

RESULTS

Patient outcomes were significantly improved for patients with MDD whose care was guided by the specific combinatorial pharmacogenomic test results compared to unguided-care (Figure 1).

Heterogeneity in effect size across studies was significant, but moderate, for symptom improvement, but was not significant for response and remission.

When the open-label studies were assessed separately, symptom improvement and response were significantly improved in the combinatorial pharmacogenomic guided-care group versus unguided-care group (Figure 2).

When the analysis was restricted to RCTs, all 3 evaluated outcomes were significantly improved in the combinatorial pharmacogenomic guided-care group versus unguided-care group (Figure 2).

CONCLUSIONS

This meta-analysis adds to the body of evidence supporting the clinical utility of using this combinatorial pharmacogenomic test to inform medication selection for patients with MDD who have failed at least 1 medication.