PROGNOSTIC AND CLINICAL UTILITY CAPABILITIES OF CELL CYCLE PROGRESSION TESTING, PROSTATE IMAGING-REPORTING AND DATA SYSTEM SCORING, AND CLINICOPATHOLOGIC DATA IN MANAGEMENT OF LOCALIZED PROSTATE CANCER

David Morris, MD¹; J. Scott Woods, FNP-BC¹; Lauren Lenz, MS²; Jennifer Logan, PhD²; Todd Cohen, PhD²; Steven Stone, PhD²

1. Urology Associates, PC, Nashville TN 37209 2. Myriad Genetics, Inc., Salt Lake City, UT 84108

BACKGROUND

- Though guidelines support MRI as a diagnostic tool, evidence that PI-RADs are prognostic remains limited.
- We compared prognostic and clinical utility capabilities among cell cycle progression (CCP) testing, mpMRI with PI-RADS, and clinicopathologic data in select medical management scenarios. We assessed:
- Distributions of CCP scores, clinical cell-cycle risk (CCR) scores, and clinicopathologic data relative to PI-RADS.
- Ability to predict tumor grade post-radical prostatectomy.
- Impact on treatment selection.

METHODS

- Retrospective, observational analysis of data from sequential patients (N=222, two cohorts) from a single Urology community practice (January 2015-June 2018).
- Cohort 1 (n=156): Newly diagnosed with localized prostate cancer (PrCA).
- Cohort 2 (n=66): Already on active surveillance (AS).
- Inclusion criteria: Diagnosed with localized PrCa; had PI-RADS version 2 score >2 derived from mpMRIultrasound fusion targeted biopsy; and had a biopsy CCP test result.
- CCP test measured the expression of 31 CCP genes and 15 housekeeper genes in FFPE tissue using RT-PCR. CCP score was calculated as the normalized expression of 31 CCP genes and was combined in a validated model with the UCSF Cancer of the Prostate Risk Assessment (CAPRA) score (0.57×CCP + 0.39×CAPRA) (Cuzick et al., Br J Cancer, 2015).

- In combined Cohorts, weak but significant correlations were seen between PI-RADS and CCP, CAPRA, or CCR, suggesting that much prognostic information captured by these measures is independent (Figure 1).
- On multivariate analysis, CCP was a significant predictor of higher-grade tumor (Gleason score ≥4+3) after radical prostatectomy, with the resected tumor ~4 times more likely to harbor a higher-risk Gleason score with every 1-unit increase in CCP (Table 1).
- On multivariate analysis, both CCP and CCR were significant and independent predictors of AS versus curative therapy in Cohort 1.
 Each 1-unit increase in CCP corresponded to ~2-fold greater likelihood of selecting curative therapy (Table 2).
- CCR score at or below the AS threshold significantly reduced the probability of selecting curative therapy over AS [OR 0.28 (95% CI 0.13, 0.57), p=0.00044].

RESULTS

CCR 0.8 active surveillance threshold (Men below threshold: Intermediate 50.0%, High 43.3%, Very High 6.7%) (Men above threshold: Intermediate 21.2%, High 66.7%, Very High 12.1%)

Table 1. Prediction of Gleason Score Category: Multivariate Analysis

Cohort 1, Newly Diagnosed (n=55/156)			
Predictor	Odds Ratio (95% CI)	p-value	
CCP	4.33 (1.58, 14.65)	0.0033	
CAPRA	2.06 (1.24, 3.81)	0.0039	
PI-RADS	0.42 (0.09, 1.65)	0.22	
Combined Cohorts (n=68/222)			
Predictor	Odds Ratio (95% CI)	p-value	
CCP	4.01 (1.54, 12.59)	0.0035	
CAPRA	2.43 (1.50, 4.44)	0.00011	
PI-RADS	0.35 (0.08, 1.31)	0.12	

CAPRA, UCSF Cancer of the Prostate Risk Assessment; CCP, cell cycle progression; CI, confidence interval; PI-RADS, Prostate Imaging and Reporting Data System; PSA, prostate specific antigen; RP, radical prostatectomy

Table 2. Impact on Management Selection Among Newly Diagnosed Patients (Cohort 1) (N=150)

Predictor	Odds Ratio (95% CI)	p-value	
Univariate Models			
CCP	2.64 (1.53, 4.85)	0.00033	
CAPRA	1.44 (1.16, 1.82)	0.00071	
CCR	2.41 (1.56, 3.92)	3.7 x 10 ⁻⁵	
PI-RADS	1.49 (0.84, 2.68)	0.17	
CCP, CAPRA, PI-RADS Multivariate Model			
CCP	2.1 (1.17, 3.96)	0.012	
CAPRA	1.3 (1.02, 1.68)	0.035	
PI-RADS	1.08 (0.58, 2.01)	0.82	
CCR, PI-RADS Multivariate Model			
CCR	2.38 (1.51, 3.94)	9.7 x 10 ⁻⁵	
PI-RADS	1.06 (0.57, 1.97)	0.86	

CAPRA, UCSF Cancer of the Prostate Risk Assessment; CCP, cell cycle progression; CCR, Clinical Cell-Cycle Risk; CI, confidence interval; PI-RADS, Prostate Imaging and Reporting Data System

Multivariate models adjusted for CCP, CAPRA, CCR, and PI-RADS.

CONCLUSIONS

- The CCP score was a better predictor of both tumor grade and treatment selection than were PI-RADS scores.
- A broad portfolio of clinical, imaging, and molecular measures remains essential to ensure the most accurate and precise risk assessment to inform treatment selection.