

Multigene assessment of genetic risk for multiple primary breast cancers

Kim McGreevy, MS, LCGC¹; Kira Svirsky MS, LCGC¹; John Kidd, MS¹; Susan Shehayeb, MS, LCGC²; Paul Frankel, PhD²; Kathleen Blazer, EdD, MS, LCGC²; Diana Turco, MS, CGC¹; Bita Nehoray, MS, LCGC²; Krystal Brown, PhD¹; Mary Daly, MD³; Elisha Hughes, PhD¹; Shelly Cummings, MS, CGC¹; Jennifer Saam, PhD¹; Thomas P. Slavin, Jr, MD¹; Jeffrey Weitzel, MD²

1. Myriad Genetics, Inc., Salt Lake City, UT 2. City of Hope, Duarte, CA 3. Fox Chase Cancer Center, Philadelphia, PA

Disclosures:

JK, DT, KM, KS, KB, EH, SC and TS are employees of Myriad Genetics, Inc.; JS is currently an employee of Guardant Health and owns Myriad Genetics stocks. Other authors have no conflict of interests.

Background & Methods

- A better understanding of hereditary cancer risk for ≥2 breast cancers beyond the BRCA1 and BRCA2 genes is needed to improve personalized risk assessment and medical management.
- We assessed the risk of ≥2 breast cancers for all genes included in a multi-gene panel test.

Women referred for hereditary cancer testing

25-28 gene hereditary cancer panel testing at Myriad Genetics (2013-2018)

N=732,338

Women with a personal history of breast cancer

Any history of DCIS and/or invasive breast cancer indicated on the TRF

N=200,126

Exclude women who meet any of the following:

- 1. From states that don't allow the use of de-identified genetic data (N=48,889)
- 2. Previous single-site or founder mutation testing (N=46,790)
- 3. Pancreatic or ovarian cancer diagnosed before their first breast cancer (N=616)
- 4. Only meet the definition for ≥2 breast cancers based on DCIS and invasive breast cancer at the same age (N=3,217)
- 5. Pathogenic variant in MUTYH (N=1,635)

Women with 1 Breast Cancer

N=88,759

Women with ≥2 Breast Cancers

At least 2 instances of breast cancer indicated on the TRF at the same age (synchronous) or different ages (metachronous)

N=10,220

PV[†] prevalence remained ≥5% in all age groups

Among women with breast cancer, 7 genes were associated with a significantly increased risk for a 2nd breast cancer

Gene	≥ 2 Breast Cancers		1 Breast Cancer		Results from Multivariable Logistic Regression		
	N	% of Cohort	N	% of Cohort		Odds Ratio (95% CI)	p-value
Breast Cancer Risk Genes	1212	11.86	7165	8.07		1.54 (1.44, 1.65)	<0.001
BRCA1	359	3.51	1906	2.15	i el	1.74 (1.55, 1.97)	<0.001
BRCA2	337	3.30	2007	2.26	H	1.57 (1.39, 1.77)	<0.001
PALB2	130	1.27	735	0.83		1.62 (1.34, 1.96)	<0.001
TP53	21	0.21	84	0.09	⊢	2.56 (1.56, 4.20)	<0.001
PTEN	13	0.13	26	0.03	├	3.80 (1.88, 7.69)	<0.001
CDH1	13	0.13	50	0.06	⊢●	2.42 (1.30, 4.52)	0.01
STK11	1	0.01	8	0.01	• · · · · · · · · · · · · · · · · · · ·	1.22 (0.14, 10.35)	0.86
СНЕК2	186	1.82	1236	1.39		1.35 (1.15, 1.57)	<0.001
ATM	102	1.00	772	0.87		1.17 (0.95, 1.45)	0.14
BARD1	30	0.29	212	0.24	●	1.27 (0.87, 1.87)	0.22
NBN	20	0.20	129	0.15	⊢●⊢	1.29 (0.78, 2.12)	0.32
Non-Breast Cancer Risk Genes	105	1.03	980	1.10	 	0.92 (0.75, 1.13)	0.45
					1 1 1 1 1 1 2 5 10		

Conclusions

- Risk for two or more breast cancers was significantly elevated for several high- and moderate-penetrance breast cancer risk genes, affirming the association of two or more breast cancers with diverse genetic etiologies.
- Our findings suggest no clear decline in pathogenic variants in women with two or more breast cancers after age 50.
- Multigene panel testing should be considered for all women with two or more breast cancers.

