Comparison of genomic instability test scores used for predicting PARP activity in ovarian cancer

Gordon B. Mills, MD, PhD¹; Michael Perry, BS²; Alexander Gutin, PhD²; Jerry S. Lanchbury, PhD²; Robert Brown, PhD³; Kirsten M. Timms, PhD ${ }^{2}$

1. Oregon Health \& Science University , Portland, OR 2. Myriad Genetic Laboratories, Inc., Salt Lake City, UT 3. Imperial College London and the Institiute of Cancer Research, London, UK

BACKGROUND

- Clinical trials have explored the utility of various genomic instability (GI) scores or gene panels to
assess deficiencies in the homologous recombination (HR) DNA repair pathway and support (PARP) assess deficiencies in the hom
inhibitor use in ovarian cancer
- These tests may include the identification of pathogenic variants in genes within the HR pathway genomic markers of instability, or a combination of the two. However, these methods of assessing homologous recombination deficiency (HRD) may not be equivalent.
-The myChoice HRD test is the only analytically- and clinically-validated, FDA-approved HRD test that includes $B R C A 1 / 2$ mutation status and three measures of genomic instability.

OBJECTIVE

- We compared the proportion of patients identified as candidates for PARP inhibitor use by three measu
panel.

[^0]RESULTS

Fiqure 1. Correlation between myChoice GI score and \%LOH

,

Choice, $\% \mathrm{LOH}$, and the 11-gene panel in the commercial and

Reference Test		myChoice HRD*		\%LOH		11-gene panel SCOTROC
		Commercial	SCOTROC	Commercial	SCOTROC	
myChoice	Correlation	--		0.847	0.87	n/a**
	PPA (42)	--		64.9\%	82.5\%	46.0\%
	PNA (42)	--		96.6\%	95.8\%	96.1\%
	PPA (33)	--		51.0\%	62.7\%	36.8\%
	PNA (33)	--		98.7\%	75.0\%	97.6\%
\%LOH	Correlation	0.847	0.87	--		not evaluated
	PPA	90.1\%	100\%	--		not evaluated
	PNA	85.3\%	75\%	--		not evaluated
11-gene panel	Correlation	n/a	n/a**	not evaluated		--
	PPA	n/a	92.6\%	not evaluated		--
	PNA	n/a	65.9\%	not evaluated		--

Table 2. Comparison of myChoice HRD and 11-ge
panel results in the SCOTROC cohort ($\mathrm{N}=153$). panel results in the SCOTROC cohort ($N=153$).
mychooiee H RRD acoounted for the mychoice Gis sore and tumor

- Correlations, PPA, and PNA between myChoice, \%LOH, and the 11 -gene pane indicate a high concordance, but not equivalence (Table 1).
- Nearly half of patients identified as positive by \% LOH in the commercial cohort (Figure by).
- This includes 32% of tumors with - This includes 32% of tumors with with wild-type BRCA1/2.
- In contrast, only 3% of patients identified as positive by \%LOH would have been missed
by myChoice HRD (Figure 1). by myChoice HRD (Figure 1).

CONCLUSIONS

- These data show that tests used to evaluate HR deficiency in published and ongoing clinical trials
are not equivalent, and they should not be considered interchangeable in predicting PARP inhibitor are not equivalent, and they
response in clinical practice. - \% LOH missed between 32% and 53% of tumors that were positive by the myChoice GI score, even
when the subset of samples with BRCA1 or $B R C A 2$ tumor mutations was assessed. The consistency of the data between mutant and wild-type tumors suggests that \%LOH may miss up
to half of patients who are appropriate candidates for PARP inhibitors.

[^0]: Email questions to ktimms@myriad.com

