Combinatorial Pharmacogenomic Testing Outperforms Individual Pharmacokinetic Gene Guidelines When Predicting Blood Levels of Psychotropic Medications and Clinical Outcomes in Patients with Depression

BACKGROUND

- There are many available options for pharmacogenomic testing, and it is important that tests be rigorously evaluated to ensure appropriate clinical use and patient management.
- We evaluated the clinical validity of a combinatorial pharmacogenomic test and single-gene Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines against patient outcomes and medication blood levels to assess their ability to appropriately inform prescribing in major depressive disorder (MDD).

METHODS

- All patients were enrolled in the Genomics Used to Improve DEpression Decisions (GUIDED) randomized-controlled trial, had a diagnosis of MDD, and ≥1 prior medication failure.
- All analyses were performed for all eligible medications (i.e. included on the combinatorial pharmacogenomic test report) and the subset of medications with CPIC level A or B evidence.
- The ability to predict patient outcomes at week 8 was assessed according to medication congruence with the combinatorial pharmacogenomic test or single-gene guideline recommendations.

CONCLUSION

- Both the combinatorial pharmacogenomic test and single-gene guidelines were significant predictors of blood levels when evaluated individually (individual models in Table).
- Only the combinatorial pharmacogenomic test remained significant when both were included in the multivariate model (combined models in Table).

REFERENCES

1. University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA
2. University of Michigan Comprehensive Depression Center and Department of Psychiatry, Ann Arbor, MI
3. Myriad Neuroscience, Indianapolis, IN
4. Penland School of Medicine of the University of Pennsylvania and the Corporal Michael Crescenz VAMC, Philadelphia, PA
5. Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
6. Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
7. Department of Psychiatry, Washington University School of Medicine, and the John Cochran Veterans Administration Hospital, St. Louis, MO
8. Michael E. DeBattista, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
9. Department of Psychiatry and Behavioral Neurobiology and School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
10. Myriad Genetics, Inc., Salt Lake City, UT